perimetr-300x225-7164475

Прямоугольник обладает многими отличительными особенностями, исходя из которых, выработаны правила вычисления его различных числовых характеристик. Итак, прямоугольник:

Плоская геометрическая фигура; Четырехугольник;

Фигура, у которой противоположные стороны равны и параллельны, все углы прямые.

Периметр – это общая длина всех сторон фигуры.

Вычисление периметра прямоугольника — довольно простая задача.

Все, что вам нужно знать, это ширину и длину прямоугольника. Поскольку прямоугольник имеет две равные длины и две равные ширины, измеряется только одна сторона.

Периметр прямоугольника равен удвоенной сумме 2-х его сторон длины и ширины.

P = (a + b) • 2, где a — длина прямоугольника, b — ширина прямоугольника.

Так же периметр прямоугольника можно найти при помощи суммы всех сторон.

P= a+a+b+b, где а– длина прямоугольника, b – ширина прямоугольника.

Периметр квадрата — это длина стороны квадрата, умноженная на 4.

P = a • 4, где a — длина стороны квадрата.

Дополнение: Нахождение найти площади и периметра прямоугольников

В программе обучения за 3 класс предусмотрено изучение многоугольников и их особенностей. Для того чтобы понять, как найти периметр прямоугольника и площадь, разберемся, что подразумевается под этими понятиями.

Основные понятия

Нахождение периметра и площади требует знания некоторых терминов. К ним относятся:

  1. Прямой угол. Образуется из 2 лучей, имеющих общее начало в виде точки. При знакомстве с фигурами (3 класс) прямой угол определяют с помощью угольника.
  2. Прямоугольник. Это четырехугольник, все углы которого являются прямыми. Его стороны называют длиной и шириной. Как известно, противоположные стороны этой фигуры равны.
  3. Квадрат. Является четырехугольником, все стороны которого равны.

При знакомстве с многоугольниками их вершины могут называться АВСД. В математике принято именовать точки на чертежах буквами латинского алфавита. В названии многоугольника перечисляют все вершины без пропусков, например, треугольник ABC.

Вычисление периметра

Периметр многоугольника — это сумма длин всех его сторон. Эта величина обозначается латинской буквой P. Уровень знаний для предложенных примеров — 3 класс.

Задача №1: «Начертите прямоугольник 3 см шириной и 4 см длиной с вершинами ABCD. Найдите периметр прямоугольника ABCD».

Формула будет выглядеть так: P=AB+BC+CD+AD либо P=AB×2+BC×2.

Ответ: P=3+4+3+4=14 (см) либо P=3×2 + 4×2=14 (см).

Задача №2: «Как найти периметр прямоугольного треугольника ABC, если значения сторон равны 5, 4 и 3 см?».

Ответ: P=5+4+3=12 (см).

Задача №3: «Найдите периметр прямоугольника, одна сторона которого равна 7 см, а другая на 2 см длиннее».

Чтобы найти периметр, сначала нужно высчитать неизвестное: 7+2=9.

Ответ: P=7+9+7+9=32 (см).

Задача №4: «Соревнования по плаванию проходили в бассейне, периметр которого составляет 120 м. Сколько метров проплыл участник соревнований, если ширина бассейна 10 м?».

В данной задаче стоит вопрос, как найти длину бассейна. Для решения найдите длины сторон прямоугольника. Ширина известна. Сумма длин двух неизвестных сторон должна составить 100 м. 120-10×2=100. Чтобы узнать расстояние, которое преодолел пловец, нужно разделить полученный результат на 2. 100:2=50.

Ответ: 50 (м).

Вычисление площади

Более сложной величиной является площадь фигуры. Для ее измерения используют мерки. Эталоном среди мерок являются квадраты.

Площадь квадрата со стороной 1 см равна 1 см². Квадратный дециметр обозначен как дм², а квадратный метр — м².

Области применения единиц измерения могут быть такими:

  1. В см² измеряют маленькие предметы, например фотографии, обложки учебников, листы бумаги.
  2. В дм² можно измерить географическую карту, оконное стекло, картину.
  3. Для измерения пола, квартиры, земельного участка используют м².

Если начертить прямоугольник 3 см длиной и 1 см шириной и разбить на квадраты со стороной 1 см, то в нем поместится 3 квадрата, а значит, его площадь составит 3 см². Если прямоугольник разбит на квадраты, найдем периметр прямоугольника также без затруднений. В данном случае он равен 8 см.

Другой способ посчитать количество квадратов, вмещающихся в фигуру, — это использование палетки. Начертим на кальке квадрат площадью 1 дм², что составляет 100 см². Поместим кальку на фигуру и посчитаем число квадратных сантиметров в одном ряду. После этого выясним количество рядов, а затем перемножим значения. Значит, площадь прямоугольника — это произведение его длины и ширины.

Способы сравнения площадей:

  1. На глаз. Иногда достаточно просто взглянуть на предметы, поскольку в некоторых случаях и невооруженным глазом видно, что одна фигура занимает больше места, как, например, учебник, лежащий на столе рядом с пеналом.
  2. Наложение. Если фигуры совпадают при наложении, их площади равны. Если же одна из них полностью помещается внутри второй, то ее площадь меньше. Места, занимаемые тетрадным листом и страницей из учебника, можно сравнить, наложив их друг на друга.
  3. По количеству мерок. Фигуры при наложении могут и не совпадать, однако иметь одинаковую площадь. Сравнить в этом случае можно, подсчитав количество квадратов, на которые разбита фигура.
  4. Числа. Сравниваются численные значения, измеренные одной и той же меркой, например, в м².

Далее предложены задачи на тему, как найти площадь и периметр прямоугольника, если известна другая величина.

Пример №1: «Швея сшила детское одеяло из квадратных разноцветных лоскутков. Один лоскуток длиной 1 дм, в ряду по 5 штук. Сколько дециметров ленты понадобится швее для обработки краев одеяла, если известна площадь 50 дм²?».

Чтобы решить задачу, нужно ответить на вопрос, как найти длину прямоугольника. Далее найдем периметр прямоугольника, составленного из квадратов. Из задачи ясно, что ширина одеяла — 5 дм, вычисляем длину, разделив 50 на 5, и получаем 10 дм. Теперь найдите периметр прямоугольника со сторонами 5 и 10. P=5+5+10+10=30.

Ответ: 30 (м).

Пример №2: «На раскопках обнаружен участок, где могут находиться древние сокровища. Сколько территории придется исследовать ученым, если известен периметр 18 м и ширина прямоугольника 3 м?».

Определим длину участка, проделав 2 действия. 18-3×2=12. 12:2=6. Искомая территория будет также равна 18 м² (6×3=18).

Ответ: 18 (м²).

Таким образом, зная формулы, вычислить площадь и периметр не составит труда, а приведенные выше примеры помогут попрактиковаться в решении математических задач.